www.econstor.eu Misspecification Testing in GARCH-MIDAS Models
ثبت نشده
چکیده
We develop a misspecification test for the multiplicative two-component GARCHMIDAS model suggested in Engle et al. (2013). In the GARCH-MIDAS model a short-term unit variance GARCH component fluctuates around a smoothly timevarying long-term component which is driven by the dynamics of a macroeconomic explanatory variable. We suggest a Lagrange Multiplier statistic for testing the null hypothesis that the macroeconomic variable has no explanatory power. Hence, under the null hypothesis the long-term component is constant and the GARCHMIDAS reduces to the simple GARCH model. We provide asymptotic theory for our test statistic and investigate its finite sample properties by Monte Carlo simulation. Our test statistic can be considered as an extension of the Lundbergh and Teräsvirta (2002) ‘ARCH nested in GARCH’ test for evaluating GARCH models. We illustrate the usefulness of our procedure by an empirical application to S&P 500 return data.
منابع مشابه
Testing for Causality in Variance using Multivariate GARCH Models
Tests of causality in variance in multiple time series have been proposed recently, based on residuals of estimated univariate models. Although such tests are applied frequently little is known about their power properties. In this paper we show that a convenient alternative to residual based testing is to specify a multivariate volatility model, such as multivariate GARCH (or BEKK), and constr...
متن کاملForecasting realized volatility: a review
Modeling financial volatility is an important part of empirical finance. This paper provides a literature review of the most relevant volatility models, with a particular focus on forecasting models. We firstly discuss the empirical foundations of different kinds of volatility. The paper, then, analyses the non-parametric measure of volatility, named realized variance, and its empirical applica...
متن کاملMisspecification tests for periodic long memory GARCH models
Distributional theory for Quasi-Maximum Likelihood estimators in long memory conditional heteroskedastic models is not formally defined, even asympotically. Because of that, this paper analyses the performance of the Likelihood Ratio and the Lagrange Multiplier misspecification tests for Periodic Long Memory GARCH models. The real size and power of these tests are studied by means of Monte Carl...
متن کاملMisspecifying GARCH-M Processes
We consider th e relationships between ARCH-type and stochast ic volatility models. A new class of volatility models, called generalized bilinear stochastic volatility, is described following an approach that tr ansforms an init ial GARCH-M process. Th e focus here is on th e interpretation of some simulation results, with a special care devoted to model misspecification.
متن کاملNonparametric Specification Testing for Continuous-Time Models with Applications to Term Structure of Interest Rates
We develop a nonparametric specification test for continuous-time models using the transition density. Using a data transform and correcting for the boundary bias of kernel estimators, our test is robust to serial dependence in data and provides excellent finite sample performance. Besides univariate diffusion models, our test is applicable to a wide variety of continuous-time and discrete-time...
متن کامل